Современные светодиодные экраны: Характеристики, технологии, критерии выбора – Часть 1

Современные светодиодные экраны: Характеристики, технологии, критерии выбора – Часть 1
Создан: 18.09.2017 Изменён: 20.06.2018

Современные светодиодные экраны: Характеристики, технологии, критерии выбора – Часть 1

Светодиодный экран – сложное электронное устройство, содержащее большое количество компонентов. Качество изображения и эксплуатационные характеристики светодиодного экрана зависят как от параметров компонентов, используемых в экране, так и от возможностей системы управления данным экраном.

С точки зрения качества изображения важны следующие характеристики экрана:

  • разрешение экрана (т.н. пространственное разрешение), в случае светодиодных экранов обычно выражаемое в виде расстояния между пикселями (pitch size);
  • максимальная яркость (измеряемая в Нитах);
  • динамический диапазон яркости, выражаемый в количестве уровней яркости, которые возможно отобразить на светодиодном экране (эта характеристика носит также название радиометрического или энергетического разрешения);
  • частота смены кадров, выражаемая в количестве кадров, показываемых за секунду (fps) (это временное разрешение);
  • частота обновления кадра (частота рефреша), измеряемая в Герцах (это тоже временноеразрешение);
  • спектральное разрешение – насколько много спектральных составляющих формируют изображение;
  • однородность цвета по всему экрану;
  • баланс белого цвета и возможность его настройки;
  • линейность восприятия яркости – субъективная характеристика качества изображения, которая выражается в возможности различать глазом близкие уровни яркости, как на темных участках изображения, так и на ярких;
  • контрастность изображения экрана;
  • характеристика изменения качества изображения экрана в зависимости от угла обзора;

Кроме качества изображения отметим также такие эксплуатационные характеристики светодиодного экрана:

  • наличие системы мониторинга состояния светодиодного экрана;
  • развитость ПО (программного обеспечения) системы управления (возможность построения сетей светодиодных экранов, в том числе сетей, содержащих как светодиодные, так и LCD экраны, возможность управления экранами через Internet, наличие встроенной подсистемы информационной безопасности);
  • уровень электромагнитного излучения в виде индустриальных радиопомех, создаваемых светодиодным экраном.

Рассмотрим некоторые из вышеперечисленных характеристик подробнее.

Формирование изображения на светодиодном экране и управление яркостью

Широтно-импульсная модуляция (PWM) и частота рефреша (refresh rate)

Исходное изображение для вывода на светодиодный экран формируется в виде компьютерного файла, чаще всего в виде видеоролика в некотором формате (*.avi, *.mpg). Этот файл декодируется управляющим компьютером (или видеоконтроллером), затем преобразуется в специальный цифровой поток, подающийся на микросхемы драйверов постоянного тока, которые, в свою очередь обеспечивают пропускание электрического тока через светодиод, что и вызывает излучение в определенном спектре.

Для формирования различных уровней яркости излучения светодиодов применяют технику широтно-импульсной модуляции - ШИМ (PWM - Pulse-width modulation). Суть этой техники заключается в том, что в зависимости от необходимого уровня яркости ток не постоянно подается на светодиод, а только в течение некоторого времени (зависящего от требуемого уровня яркости), затем прекращает подаваться, затем снова подается и т.д. Например, для формирования яркости в половину от максимальной надо пропускать ток половину времени некоторого цикла, в четверть яркости – четверть времени, и т. д. Иными словами, светодиод работает в режиме “включен-выключен”, причем время включения пропорционально требуемому уровню яркости.

Из этой техники следует, что на светодиоде (а значит и на экране) изображение формируется циклично. Время минимального цикла, за который происходит последовательное «включение» и “выключение” светодиода называется периодом обновления (рефреша, refresh time). Чаще используется обратная величина – частота рефреша (refresh rate).

Рассмотрим пример. Пусть частота рефреша светодиодного экрана равна 100 Гц. Если нам нужно обеспечить полную яркость – 100%, то мы постоянно подаем ток на светодиод весь период рефреша, равный в данном случае 1/100 с = 10 мс. Если требуется яркость 50%, то за это время мы в течение 5 мс подаем ток, в течение следующих 5 мс не подаем, в следующий цикл снова 5 мс подаем, 5 мс – нет и т.д. Если требуется яркость в 1% от максимальной, то ток подается в течение 0,1 мс и не подается в течение 9,9 мс.

Кроме этой техники применяются модифицированные методы PWM: Scrambled PWM (Macroblock), Sequential Split Modulation (Silicon Touch), Adaptive Pulse Density Modulation (MY-Semi). Суть этих техник заключается в “размазывании” времени “включения” светодиода по всему периоду рефреша. Так формирование 50%-ой яркости при частоте рефреша 100 Гц может выглядеть так: 1 мс - светодиод включен, 1 мс – выключен, 1 мс – включен, 1 мс – выключен и т.д. То есть для 50% яркости можно сказать, что период рефреша уменьшился в 5 раз и стал равен 2 мс. Соответственно частота рефреша увеличилась и стала 500 Гц. Но эти цифры справедливы лишь для формирования 50% яркости. Для каждой схемы формирования яркости есть минимальная яркость – 1 импульс (некоторое минимальное время) включения светодиода и остальное время он выключен.

Таким образом, четкая цикличность присущая традиционному PWM при применении модифицированных методов искажается, поскольку, в зависимости от уровня яркости можно выделить периоды с меньшим временем (и следовательно большей частотой рефреша). Можно, например, сказать, что для данного светодиодного экрана частота рефреша изменяется от 100 Гц до 1 кГц. Это означает, что минимальную яркость на светодиодном экране мы показываем с периодом рефреша 100 Гц. А при формировании больших уровней яркости можно выделить периоды (“включения-выключения” светодиодов) с меньшей длительностью.

Итак, для модифицированных методов PWM такое понятие как частота рефреша может трактоваться неоднозначно. Однако, если рассматривать период рефреша как минимальное время, за которое происходит обновление изображения для всех уровней яркости, то это значение не зависит от схемы формирования PWM.

Чересстрочная развертка или временное разделение (time division) светодиодных экранов

В ряде случаев конструкцией светодиодного экрана предусмотрен такой метод формирования изображения, при котором в один момент времени ток не может быть подан на все светодиоды сразу. Все светодиоды экрана разбиваются на несколько групп (как правило, две, четыре или восемь), которые включаются поочередно. То есть описанные выше методы формирования изображения применяются поочередно к каждой из этих групп. В случае двух таких групп формирование изображения аналогично применяемой в аналоговом телевидении чересстрочной развертке.

Данный способ применяется, в основном, для удешевления светодиодных экранов, так как для его реализации требуется меньше светодиодных драйверов (в два, четыре, восемь раз - в число раз соответствующее количеству поочередно включаемых групп), которые составляют существенную часть стоимости светодиодного экрана. Кроме этого, метод временного деления практически неизбежен при высоком разрешении (то есть малом шаге) светодиодного экрана, так как в этом случае чрезвычайно сложно обеспечить размещение большого количества драйверов и их теплоотвод.

Следует понимать, что при применении этого метода снижается максимальная яркость светодиодного экрана, а также уменьшается частота рефреша (в количество раз соответствующее количеству групп).

Предположим, что мы производим временное деление между двумя группами светодиодов. На одну группу подается ток в соответствии с требуемой яркостью и используемым методом PWM. Другая группа в это время отключена от источника тока. По прошествии периода рефреша группы меняются – теперь на вторую подается ток, а первая отключена. Поэтому, общий период, за который обновляется вся информация на светодиодном экране, увеличивается в два раза.

Понятие частота рефреша в этом случае еще более размывается. Строго говоря, период рефреша как минимальное время, за которое происходит обновление изображения для всего светодиодного экрана, увеличивается. Однако, если для каждой группы рассматривать только период, на котором формируется изображение методом PWM, то частота рефреша – прежняя.

Частота рефреша светодиодного экрана и человеческий глаз

Частота рефреша, в первую очередь, влияет на восприятие изображения глазом человека. Изображение, образно говоря, постоянно “мерцает”, хотя и с достаточно высокой частотой. Восприятие человеком световых образов  – явление психофизическое и устроено таким образом, что отдельные вспышки света суммируются во времени. Это суммирование происходит в течение определенного времени (10 мс) и зависит от яркости вспышек (закон Блоха). Если свет “мерцает” достаточно быстро, с частотой выше некоторой пороговой (CFF – Critical Flicker Frequency), то глаз человека воспринимает этот свет так же, как если бы он горел постоянно (закон Тальбо-Плато). Пороговая частота CFF зависит от множества факторов, таких как спектр источника света, расположение источника по отношению к глазу, уровень яркости. Однако, можно с уверенностью сказать, что при обычных условиях эта частота не превышает 100 Гц.

Таким образом, если рассматривать восприятие изображения на светодиодном экране, сформированного методом PWM или модифицированным PWM, человеческим глазом, то изображение с частотой рефреша 100 Гц и 1 кГц будут восприниматься одинаково.

Частота рефреша экрана и видеокамера

Однако, в качестве воспринимающей системы может выступать не только глаз человека, но и видеозаписывающая аппаратура, которая имеет характеристики, отличные от глаза. Это особенно актуально для светодиодных экранов, установленных на стадионах, спортивных сооружениях или концертных площадках, с которых обычно ведется видеотрансляция. Время экспозиции, или выдержка (shutter speed), в современных видеокамерах может меняться от секунд до тысячных долей секунды.

Рассмотрим светодиодный экран, в котором изображение формируется традиционным методом PWM с частотой рефреша 100 Гц. На экране демонстрируется статическое изображение. Предположим также, что мы снимаем светодиодный экран видеокамерой с выдержкой 1/8 с, т.е. время экспозиции 125 мс. За это время на фотосенсор попадет свет от 12,5 периодов рефреша. Когда мы делаем серию кадров с данной выдержкой, то разница в световом потоке, попадающем на светочувствительный элемент, не превышает потока, сформированного светодиодами за 0,5 периода рефреша, т.е. не более 4% от всего потока. Разница образуется за счет того, что видеокамера и светодиодный экран, естественно, не синхронизированы и каждый кадр, сделанный видеокамерой, попадает в разное время относительно начала цикла рефреша светодиода. Таким образом, видеоизображение с камеры будет показывать достаточно ровную картинку со светодиодного экрана.

Теперь уменьшим выдержку, с которой мы снимаем до 1/250 с, время экспозиции равно 4 мс. Это время в 2,5 раза меньше периода рефреша. Теперь соотношение между временем начала кадра видеокамеры и началом цикла PWM будет иметь существенное значение. Одни кадры могут попасть в начало цикла, другие в середину, третьи в конец. Таким образом, образуется значительная погрешность в световом потоке в разных кадрах. То есть, изображение, проигрываемое на видеокамере, будет случайно менять яркость, будет “плыть”. Кроме того, уменьшится яркость изображения, что, впрочем, характерно для всех снимаемых на короткой выдержке объектов. Если еще уменьшить выдержку, то с большей вероятностью будут появляться черные кадры (когда начало кадра видеокамеры попадает на тот участок цикла PWM, где светодиод “выключен”) и изображение с камеры начнет мерцать.

Таким образом, если мы хотим снимать на видеокамеру светодиодный экран, на котором изображение формируется с использованием традиционного PWM, то частота рефреша должна быть сопоставимой или превосходить выдержку, с которой снимает камера.

В случае применения модифицированных методов PWM можно провести те же рассуждения. В силу “размазывания” времени включения светодиода по циклу PWM на больших яркостях, изображение, снятое на видеокамеру будет более стабильно, чем при применении традиционного PWM. Но на малых яркостях ситуация остается прежней – картинка будет либо менять яркость, либо мерцать. Поскольку реальное изображение содержит, как правило, различные уровни яркости, то изображение, снятое на видеокамеру также будет иметь погрешности, хотя и иного свойства.

Итак, при видеосъемке избежать наличия искажения изображения при произвольных параметрах съемки не удается. Всегда можно найти значение выдержки, при которой видео будет искажено. Ситуация аналогична съемке аналогового телевизора аналоговой же камерой. В силу различий в частоте развертки при подобной съемке на снимаемом телевизоре видны диагональные черные полосы.

Более важным для видеосъемки светодиодного экрана представляется вопрос однородности изображения, снятого на видеокамеру. Светодиодный экран – конструкция модульная, состоящая из нескольких блоков, изображение на которых непосредственно формируется различными контроллерами. Если эти контроллеры не синхронизируют начало цикла PWM, то есть начало цикла на разных участках светодиодного экрана приходится на разное время, то при съемке может произойти следующая ситуация. На одном участке светодиодного экрана начало кадра видеокамеры может совпасть с началом цикла PWM, а на другом, например, на середину. Если выдержка сопоставима с периодом рефреша, то на одном участке изображение будет светлее, а на другом темнее. Все изображение на светодиодном экране в этом случае будет разбиваться на прямоугольники разной яркости, что представляет больший дискомфорт для зрителя.

Стоимость увеличения частоты рефреша светодиодных экранов

Независимо от способа генерации PWM схемы их реализующие имеют общие черты. Схема генерации PWM имеет некоторую тактовую частоту Fpwm. Пусть требуется сгенерировать Nуровней яркости. В этом случае частота рефреша Fr не может превышать Fpwm/N.

Для иллюстрации приведем некоторые примеры:

Приведенные цифры предполагают, что существуют независимые схемы формирования PWM для каждого светодиода, то есть схема PWM реализована непосредственно в светодиодных драйверах экрана.

В случае применения простых драйверов и формирования PWM на контроллере светодиодного экрана, необходимо учитывать, сколько драйверов соединены последовательно и обслуживаются одной схемой PWM. Если одной схемой PWM обслуживаются M драйверов с 16-ю выходами, то частота рефреша не может превышать Fpwm/(N*M*16), что приводит к значительному уменьшению частоты рефреша либо необходимости существенно увеличивать тактовую частоту.

В случае применения временного деления (чересстрочной развертки), как мы уже говорили, частота рефреша уменьшается пропорционально коэффициенту деления.

Итак, для увеличения частоты рефреша светодиодных экранов возможны следующие варианты:

  • применение “интеллектуальных” драйверов;
  • увеличение тактовой частоты схемы генерации PWM;
  • уменьшение количества уровней яркости (глубины цвета).

Каждый из этих способов имеет свои достоинства и недостатки. Так интеллектуальные драйверы дороже обычных, повышение тактовой частоты увеличивает энергопотребление (а значит тепловыделение, необходимость теплоотвода во избежание перегрева), уменьшение количества уровней яркости снижает качество изображения.

Рефреш светодиодных экранов: Выводы

Часто такой параметр как частота рефреша светодиодных экранов используется в маркетинговых целях как один из показателей качества изображения. Предполагается, что чем выше частота рефреша, тем лучше светодиодный экран при прочих равных условиях. Однако, иногда приводятся цифры, вводящие в заблуждение потенциального покупателя. Например, указание частоты рефреша в несколько килогерц, как мы видели, может означать либо применение модифицированных методов PWM, для которых частота рефреша различна для различных уровней яркости, либо уменьшение глубины цвета.

Следует понимать, что высокие значения частоты рефреша и, одновременно, глубины цвета, скорее всего, предполагают, что этот рефреш в светодиодном экране достигается на определенных (высоких) уровнях яркости.

В случае применения чересстрочной развертки может быть указана частота соответствующая одному циклу PWM для одной группы светодиодов, в то время как реальная частота рефреша экрана (которая влияет на восприятие) в несколько раз ниже.

Более информативным, видимо, является указание глубины цвета и тактовой частоты PWM, с возможным добавлением диапазона частоты рефреша экрана (например, 200-1000 Гц) в случае использования модифицированных методов PWM. Если в светодиодном экране применено временное деление, то необходимо явно указать на этот метод формирования изображения (например time division = 1:1 – нет временного деления, time division = 1:2 – одновременно PWM работает на половине экрана и т. д.).

Для восприятия глазом этот параметр светодиодного экрана вообще несущественен. Для частот выше 100 Гц глаз человека не увидит разницу в качестве изображения. Следовательно, необходимо понять, нужна ли высокая частота рефреша и стоит ли за нее платить.

В случае активного использования светодиодного экрана в процессе видеосъемки этот показатель становится существенным, но следует также обратить внимание на однородность изображения при видеосъемке. Для таких светодиодных экранов, возможно, лучше провести тестовые съемки, чем полагаться лишь на такой параметр как частота рефреша.

Публикации по теме: LED-продукция

Все блоги